

HYDROFORMING IN PERFECTION

GROUP OF COMPANIES MECHANICAL ENGINEERING SINCE 1840 A **Reinhold Wesselmann GmbH** Founded in **1995** HYDRAULIC OPEN-LOOP & CLOSED-LOOP CONTROL TECHNOLOGY Wesselmann Energie & Filtration GmbH Founded in **1997** CONSTRUCTION OF ENERGY SYSTEMS FF Fluid Forming GmbH Founded in 2004 **DEVELOPMENT & PRODUCTION OF HYDROFORMING MACHINES** Employees: 54 (Lastrup)

FF FLUID FORMING GMBH

2006	Best Innovation Award at the Euroblech Hanover			
2017	Moving to a new development and production facility			
	3 x FB25, FB35 and FB80 FormBalancers			
	1 x 3D fiber laser system			
2008 - 2023	Hydroforming systems			
	7 x FormBalancers FB25 (Germany, China, USA, Asia)			
	3 x FormBalancers FB35 (Germany, Poland)			
	1 x FormBalancer FB40 with double carriage (Germany)			
	2 x FormBalancers FB42 (Germany)			
	3 x FormBalancers FB80 (Germany, Russia)			
	1 x FormBalancers FB25-FC (Germany)			

FF FLUID FORMING GMBH - SCOPE OF PERFORMANCE

PRODUCTION AND SUPPLY OF HYDROFORMING SYSTEMS (FORMBALANCER)

- ↗ Hydroforming systems with deformation pressures up to 4000 bars
- ↗ FormBalancer worktable sizes up to 1700 mm x 3000 mm
- 7 Tailor-made designs based on customer-specific applications and performance requirements
- Additional modules for the production of fuel cells and tubes (endogenous high pressure forming)

QUICK FABRICATION OF PROTOTYPE TOOLS AND PROTOTYPE COMPONENTS

- arrow Your organisation can cut costs in machine tooling by up to 80 %
- ↗ Production times of prototypes range from 6 to 8 weeks
- 7 This also applies to large tools having dimensions of up to 1300 x 2000 mm and complex geometries (back-cuts, mating geometries & free-form surfaces)

PRODUCTION AND SUPPLY OF BATCH COMPONENTS

- After review, the prototype tool can be used as a tool for batch production
- ↗ Small and medium batch sizes up to 400,000 parts per year are possible
- All materials that are both ductile and malleable (capable of cold forming) in a thickness range of 0.05 to 8 mm can be used

HYDROFORMING PROCESS WITH THE FORMBALANCER

HYDROFORMING - PRINCIPLE OF OPERATION

- ↗ The locking pressure is built up
- abla The fluid pressurized up to 4000 bars enters the system
- During the forming process, the metal sheet is clamped in a fixed position and allowed to post-yield in a program-controlled process
- ↗ The metal sheet is uniformly stretched into the cavity

TECHNICAL ADVANTAGES OF HYDROFORMING

HYDROFORMING VERSUS CONVENTIONAL DEEP-DRAWING

Small inherent stresses and little tendency springback

Conventional deep-drawing

Hydroforming with the FormBalancer

TECHNICAL ADVANTAGES OF HYDROFORMING

HYDROFORMING VERSUS CONVENTIONAL DEEP-DRAWING

- Uniform sheet thickness distribution
- → uniform and continuous distribution of strength and stiffness
 → avoiding abrupt transitions in local constraints

- ↗ Dimensional stability
 - → maximum repeatability
 - → especially with complex geometries

MATERIALS AND COMPONENT GEOMETRIES

- Suitable for all ductile and malleable materials (capable of cold forming)
- ↗ Sheet metal thicknesses range from 0.05 to 8 mm
- Extremely flat shapes with very small radii
- Component depths
 up to 600 mm,
 component length
 of 2000 mm

HYDROFORMING TOOLS

TOOL MATERIALS

- ↗ 1.2311, 1.2379
- ↗ 1.0570 / St52
- ↗ Aluminium
- Plastic
- ≯ Wood

→ Different multiple tools, each with identical geometries

HYDROFORMING TOOLS

TOOLING COST REDUCTION BY UP TO 80 %

- ↗ Only one tool (matrix) is required
- ↗ No hold-down device and punch required
- Tool-holder inserts for various tools
- ↗ Longer tool lives due to less wear and tear
- Short development and production times

SHORT DEVELOPMENT TIME OF PROTOTYPES

- Short development time of prototype tools and components
- Huge speed advantages over other prototyping methods
- Production times for prototype tools range from 4 to 6 weeks after "design freeze", completion of the finished prototype parts will take 2 more weeks
- Short production times also for large tools up to 2000 mm x 1300 mm x 600 mm

COMPLEX GEOMETRIES

- Parts with back-cuts, mating geometries
 & free-form surfaces can be manufactured
- Components of any length up to 2000 mm can be produced
- Ductile and malleable all materials
 (capable of cold forming) can be hydroformed
 (sheet metal thicknesses ranging
 from 0.05 mm to 8 mm)
- Several components can be formed at the same time

MAXIMUM SURFACE QUALITY

- Practically no of deep drawing traces
 due to water as a forming medium
 in the deformation process
- Brushed and coated materials
 can be used without deep drawing marks
- Very homogeneous sheet thickness distribution because a uniform pressure on the surface of the part
- Small inherent stresses and springback

THE FORMBALANCER

PRINCIPLE OF OPERATION OF THE FORMBALANCER

CYCLE TIMES OF THE FORMBALANCER

- The average cycle time is 25 90 s for small to large components (without handling time)
- ↗ The cycle time depends on:
 - -> the required pressure
 - -> the volume of the component
 - → the material
- Cycle times can be optimized through automation:
 -> coil fed production
 -> use of robots

FORMBALANCER MACHINE DESIGNS

THE FORMBALANCER DESIGN CAN BE CUSTOMIZED TO INDIVIDUAL PREFERENCES AND WILL BE PROVIDED ON A TURNKEY BASIS TO ALL CUSTOMERS AROUND THE WORLD

FormBalancer	Тур FB25	Тур FB35	Тур FB42	Тур FB50	Тур FB60
Closing force (kN)	25.000	35.000	42.000	50.000	60.000
Worktable size (mm)	800 x 800	1.000 x 1.200	1.200 x 1.200	1.200 x 1.500	1.300 x 1.600
Forming depth (mm)	max. 300	max. 450	max. 500	max. 500	max. 550
Forming pressure (bars)	max. 4.000	max. 4.000	max. 4.000	max. 4.000	max. 4.000
FormBalancer	Тур FB80	Typ FB80L	Typ FB100	Тур FB120	Тур FB160
Closing force (kN)	80.000	80.000	100.000	120.000	160.000
Worktable size (mm)	1.500 x 1.800	1.300 x 2.000	1.500 x 2.000	1.500 x 2.500	1.700 x 3.000
Forming depth (mm)	max. 600	max. 600	max. 600	max. 600	max. 600
Forming pressure (bars)	max. 3.000	max. 3.000	max. 3.000	max. 3000	max. 3000

FORMBALANCER FUELL CELL

PRINCIPLE OF OPERATION FORMBALANCER FC

AUTOMATION POTENTIALS FOR THE FORMBALANCER

UTILIZING THE FORMBALANCER FOR THE PRODUCTION OF FUEL CELLS

AUTOMATION POTENTIALS FOR THE FORMBALANCER

INTEGRATING ROBOTICS INTO THE MANUFACTURING PROCESS

